Due Today

1. Short Prototype Test Report (now)
2. Twitter Client (by midnight)
The danger of writing for other platforms

Twitter memo: “Twitter will provide the primary mainstream consumer client experience on phones, computers, and other devices by which millions of people access Twitter content”

In other words: as of today, don’t write Twitter clients anymore.
New Assignments

Peer Review Form
Due Wednesday after Spring Break, in class

Feedback will determine whether you score higher or lower than your group average.

There will be a 2nd round of feedback later.

<table>
<thead>
<tr>
<th>Year</th>
<th>CS400 Evaluation</th>
<th>Team Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✑ Write the names of the people on your team including your own name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This self and peer evaluation asks about how you and each of your teammates contributed to the team during the time period you are evaluating. For each way of contributing, please rate the behaviors fine rating. Then confidentially rate yourself and your teammates by placing a mark in the relevant box.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>✑ Does your or a higher quality of work than expected.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>✑ Makes important contributions that improve the team’s work.</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>✑ Helps to complete the work of teammates who are having difficulty.</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐ Does not meet expectations.</td>
<td>☐</td>
</tr>
</tbody>
</table>
New Assignments

Interactive Prototype: Make your app real!

Functional, interactive app written in Android SDK

Devices on Monday after Spring Break.

Due on April 4
Presentations on April 4, April 6
Midterm on 3/16

In class. 75 minutes.
Closed book & notes.
If you are registered with the DSP office and have special needs, we need to see your letter by **this Wednesday, 3/10, 1pm to make accommodations.**
Midterm Review
Interface Design Cycle

- Design
- Prototype
- Evaluate
Task Analysis & Contextual Inquiry

Observe existing practices

Create scenarios of actual use

Create models to gain insight into work processes

http://www-personal.umich.edu/~chrisli/m2.html

CS247, Stanford, 2006
Rapid Prototyping

Build a mock-up of design (or more!)

Low fidelity techniques
- Paper sketches
- Cut, copy, paste
- Video segments

Interactive prototyping tools
- HTML, Flash, Javascript,
- Visual Basic, C#, etc.

UI builders
- Interface Builder, Visual Studio, NetBeans

http://www.balsamiq.com/products/mockups/examples/wiki
http://www.nngroup.com/reports/prototyping/video_stills.html

Moggridge, Designing Interactions, p.704
Evaluation

Evaluate analytically (no users)

Test with real target users

Low-cost techniques
 expert evaluation
 walkthroughs

Higher cost
 Controlled usability study
The Design Process [Koberg & Bagnall]

1. Acceptance
2. Analysis
3. Definition
4. Ideation
5. Idea selection
6. Implementation
7. Evaluation
Comparison

Focus differs

WF has no feedback
High cost of fixing errors: increases by 10x at each stage

Iterative design finds problems earlier

True for modern web applications?
IDEO’s Brainstorming Rules

1. Sharpen the Focus
2. Playful Rules
3. Number your Ideas
4. Build and Jump
5. The Space Remembers
6. Stretch Your Mental Muscles
7. Get Physical

Aim for quantity
Hope for quality
What is the point of a critique?

Show off how great your project is.

Get honest reactions, ask for input on open questions.

Q: How is a critique different from a brainstorm?

http://www.flickr.com/photos/crystiancruz/2353909834/
Main Point of Observation

Don’t just trust your intuition to make design decisions.

Observe target users in context to inform your design.
Many varieties of observation techniques:

- Ethnography / Ethnomethodology
- Task Analysis
- Contextual Inquiry
- Cultural Probes
- Diary Studies
- Prompted “pager” studies"
Task Analysis Questions

1. Who is going to use system?
2. What tasks do they now perform?
3. What tasks are desired?
4. How are the tasks learned?
5. Where are the tasks performed?
6. What’s the relationship between user & data?
7. What other tools does the user have?
8. How do users communicate with each other?
9. How often are the tasks performed?
10. What are the time constraints on the tasks?
11. What happens when things go wrong?
Goals of Contextual Inquiry

Method:
“Go where the customer works, observe the customer as she works, and talk to the customer about their work” [Holtzblatt]

Goals:
Get inside the user’s head
See their tasks the way they do
A middle ground between pure observation and pure interview
Guideline: Master-Apprentice Model

Allows user to teach us what they do
- Skill knowledge is usually tacit (can’t put it in books)
- Sometimes literal apprenticeship is best

Matsushita Home Bakery – First automatic bread maker to have twist/stretch motion [Nonaka 95]
Principles of Contextual Inquiry

1. Context
2. Partnership
3. Interpretation
4. Focus
“Hypothetical Archetypes”

Archetype: (American Heritage)
An original model or type after which other similar things are patterned; a prototype
An ideal example of a type; quintessence

A precise description of user in terms
Capabilities, inclinations, background
Goals (not tasks)
Why Personas?

It’s hard to reason about users in aggregate, and impossible to please everyone.

General users have too many conflicting goals.
Defining and Using Personas

Defining them
Identify major clusters from multiple user interviews/inquiries
Synthesize their goals
Check for completeness and specificity
Specificity prevents “elastic user”
Try them out by developing narrative

Design each interface for a single primary persona
Yet other type might use the interface
“… the term **affordance** refers to the *perceived* and *actual* properties of the thing, primarily those fundamental properties that determine just how the thing could possibly be used.

Some affordances obvious
- Knobs afford turning
- Buttons afford pushing
- Glass can be seen through

Some affordances learned
- Glass breaks easily

The Design of Everyday Things. Don Norman
Review Conceptual Models

Designers model may not match user’s model
Users get model from experience & usage
Users only work with system image, not with designer

What if the two models don’t match?
1. Make Controls Visible
2. Make Sure Mapping is Clear

Mapping: Relationship between controls and their result

Mercedes S500 Car Seat Controller
3. Provide Feedback

People press >> 1 time
Unclear if system has registered the button press
Action Cycle

- **Goals**
 - Evaluation
 - Evaluation of interpretations
 - Interpreting the perception
 - Perceiving the state of the world
 - Execution
 - Intention to act
 - Sequence of actions
 - Execution of actions

- **The World**
 - start here
Direct Manipulation

An interface that behaves as though the interaction was with a real-world object rather than with an abstract system

Central ideas

Visibility of the objects of interest
Rapid, reversible, incremental actions
Manipulation by pointing and moving
Immediate and continuous display of results
Gulfs of Execution & Evaluation

Mental Model

REAL WORLD

PHYSICAL SYSTEM

GULF OF EXECUTION

GULF OF EVALUATION

GOALS
Semantic & Articulatory Distance

Semantic

Semantic distance reflects the relationship between the user’s intentions and the meaning of expressions in the interface languages.

Articulatory

Articulatory distance reflects the relationship between the physical form of an expression in the interaction language and its meaning.
Modes: Definition

The same user actions have different effects in different situations.
Examples?
Human Info. Processor

Processors:
- Perceptual
- Cognitive
- Motor

Memory:
- Working memory
- Long-term memory

Unified model
- Probably inaccurate
- Predicts perf. well
- Very influential
Perceptual Processor

Cycle time

Quantum experience: 100ms

Percept fusion

![Graph showing perceived number versus number of pulses with different pulse rates: 10/sec, 15/sec, and 30/sec.](image)
Working Memory

Access in chunks
Task dependent construct
7 +/- 2 (Miller)

Decay
Content dependant
1 chunk 73 sec
3 chunks 7 sec

Attention span
Interruptions > decay time
Motor Processor

Receive input from the cognitive processor

Execute motor programs

Pianist: up to 16 finger movements per second

Point of no-return for muscle action
Power Law of Practice

Task time on the nth trial follows a power law

\[T_n = T_1n^{-a} + c \]

You get faster the more times you do something!
Fitts’ Law

\[T = a + b \log_2(D/S + 1) \]

- \(a, b \) = constants (empirically derived)
- \(D \) = distance
- \(S \) = size

ID is Index of Difficulty = \(\log_2(D/S+1) \)

Models well-rehearsed selection task

\(T \) increases as the \textbf{distance} to the target increases

\(T \) decreases as the \textbf{size} of the target increases
Considers Distance and Target Size

\[T = a + b \log_2 \left(\frac{D}{S} + 1 \right) \]

Same ID \rightarrow Same Difficulty
Considers Distance and Target Size

\[T = a + b \log_2(D/S + 1) \]

Smaller ID → Easier
Considers Distance and Target Size

\[T = a + b \log_2(D/S + 1) \]

Larger ID \rightarrow Harder

Target 1

Target 2
3-State Model of Input (Buxton)

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Out Of Range: The device is not in its physical tracking range.</td>
</tr>
<tr>
<td>1</td>
<td>Tracking: Device motion moves only the cursor.</td>
</tr>
<tr>
<td>2</td>
<td>Dragging: Device motion moves objects on the screen.</td>
</tr>
</tbody>
</table>

(Table from Hinckley Reading)
Mouse

(Figure from Hinckley Reading)

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Out Of Range: The device is not in its physical tracking range.</td>
</tr>
<tr>
<td>1</td>
<td>Tracking: Device motion moves only the cursor.</td>
</tr>
<tr>
<td>2</td>
<td>Dragging: Device motion moves objects on the screen.</td>
</tr>
</tbody>
</table>
Prototyping

PURPOSE

Understand Existing Experience

“Inquiring Actions”

Explore
Experiment
Validate

Communicate

Anchor Discussion
Persuade
Fidelity in Prototyping

Fidelity refers to the level of detail.

High fidelity.
Prototypes look like the final product.

Low fidelity.
Artists renditions with many details missing.
Paper Prototypes are low-fidelity.
What about software?
Hi-Fi Disadvantages

Distort perceptions of the tester

Formal representation indicates “finished” nature

People comment on color, fonts, and alignment

Discourages major changes

Testers don’t want to change a “finished” design

Sunk-cost reasoning: Designers don’t want to lose effort put into creating hi-fi design
Engineering Interfaces
User Interface Components

Each component is an object with

- Bounding box
- Paint method for drawing itself
- Drawn in the component’s coordinate system
- Callbacks to process input events
- Mouse clicks, typed keys

Java:
```java
public void paint(Graphics g) {
    g.fillRect(...); // interior
    g.drawString(...); // label
    g.drawRect(...); // outline
}
```

Cocoa:
```cocoa
(void)drawRect:(NSRect)rect
```
Layout: Containment Hierarchy

- Window
 - Panel
 - Label
 - TextArea
 - Panel
 - Button
 - Button
Anatomy of an Event

Encapsulates info needed for handlers to react to input

- Event Type (mouse moved, key down, etc)
- Event Source (the input component)
- Timestamp (when did event occur)
- Modifiers (Ctrl, Shift, Alt, etc)

Event Content

Mouse: x,y coordinates, button pressed, # clicks
Keyboard: which key was pressed
Event Dispatch Loop

Event Queue
- Queue of input events

Event Loop (runs in dedicated thread)
- Remove next event from queue
- Determine event type
- Find proper component(s)
- Invoke callbacks on components
- Repeat, or wait until event arrives

Component
- Invoked callback method
- Update application state
- Request repaint, if needed

Mouse moved \((t_0,x,y)\)
Model-View-Controller

OO Architecture for interactive applications
introduced by Smalltalk developers at PARC ca. 1983
Why MVC?

Combining MVC into one class will not scale
model may have more than one view
each is different and needs update when model changes

Separation eases maintenance and extensibility
easy to add a new view later
model info can be extended, but old views still work
can change a view later, e.g., draw shapes in 3D
flexibility of changing input handling when using separate controllers
Changing the Display

Erase and redraw
using background color to erase fails
drawing shape in new position loses ordering
Damage / Redraw Method

View informs windowing system of areas that are damaged does not redraw them right away…

Windowing system
batches updates
clips them to visible portions of window

Next time waiting for input
windowing system calls Repaint() method
passes region that needs to be updated
What is a thread?

A **thread** is a *partial virtual machine*.

Each thread has its own stack (and local variables) but shares its heap with other threads in the same application.

Threads can be independently scheduled by the OS/VM.

```c
for (i=0; i<n; i++)
{
  tmp = A[i];
  A[i] = B[i];
  B[i] = tmp;
}
```
Why use multithreading for UIs?

Not all code can complete quickly inside an event handler. Examples?
Updating the UI from another thread

All common UI frameworks have a single UI thread
You are only allowed to modify the UI from the main thread.

Two fundamental rules:
Do not block the UI thread
Background threads they **must not modify the UI.**

Solution: When worker thread completes, request update back in the UI thread.
How to properly update the UI

Almost all GUI frameworks offer some convenient mechanism to notify the main thread from another thread.

Android has at least three such mechanisms:

1. Call `View.post(Runnable)` from worker thread
2. Subclass `AsyncTask` – creates threads behind the scenes
3. Send messages in one thread with `Handler.sendMessage()` – message is received in another thread (like IPC)
Handler.sendMessage Example

Main thread

Handle event
Handle event
Handle event
btn.OnClick()
Handle event
Handle event
Handle event

handleMessage()
update GUI

Helper thread

Start new thread

Long computation
...
sendMessage(“done”)
Usability Testing Methods
<table>
<thead>
<tr>
<th>Genres of assessment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated</td>
<td>Usability measures computed by software</td>
</tr>
<tr>
<td>Inspection</td>
<td>Based on skills, and experience of evaluators</td>
</tr>
<tr>
<td>Formal</td>
<td>Models and formulas to calculate measures</td>
</tr>
<tr>
<td>Empirical</td>
<td>Usability assessed by testing with real users</td>
</tr>
</tbody>
</table>
Usability Heuristics

“Rules of thumb” describing features of usable systems
Can be used as design principles
Can be used to evaluate a design

Example: Minimize users’ memory load
Nielsen’s Ten Heuristics

H2-1: Visibility of system status
H2-2: Match system and real world
H2-3: User control and freedom
H2-4: Consistency and standards
H2-5: Error prevention
H2-6: Recognition rather than recall
H2-7: Flexibility and efficiency of use
H2-8: Aesthetic and minimalist design
H2-9: Help users recognize, diagnose, recover from errors
H2-10: Help and documentation
<table>
<thead>
<tr>
<th>Phases of Heuristic Eval. (1-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Pre-evaluation training</td>
</tr>
<tr>
<td>Provide the evaluator with domain knowledge if needed</td>
</tr>
<tr>
<td>2) Evaluation</td>
</tr>
<tr>
<td>Individuals evaluate interface then aggregate results</td>
</tr>
<tr>
<td>Compare interface elements with heuristics</td>
</tr>
<tr>
<td>Work in 2 passes</td>
</tr>
<tr>
<td>First pass: get a feel for flow and scope</td>
</tr>
<tr>
<td>Second pass: focus on specific elements</td>
</tr>
<tr>
<td>Each evaluator produces list of problems</td>
</tr>
<tr>
<td>Explain why with reference to heuristic or other information</td>
</tr>
<tr>
<td>Be specific and list each problem separately</td>
</tr>
</tbody>
</table>
Phases of Heuristic Eval. (3-4)

3) **Severity rating**
 Establishes a ranking between problems
 Cosmetic, minor, major and catastrophic
 First rate individually, then as a group

4) **Debriefing**
 Discuss outcome with design team
 Suggest potential solutions
 Assess how hard things are to fix
Number of Evaluators

Single evaluator achieves poor results
Only finds 35% of usability problems
5 evaluators find ~ 75% of usability problems
Why not more evaluators???? 10? 20?
Adding evaluators costs more
Many evaluators won’t find many more problems

But always depends on market for product:
popular products → high support cost for small bugs
Steps in Designing an Experiment

1. State a lucid, testable hypothesis
2. Identify variables (independent, dependent, control, random)
3. Design the experimental protocol
4. Choose user population
5. Apply for human subjects protocol review
6. Run pilot studies
7. Run the experiment
8. Perform statistical analysis
9. Draw conclusions
Experiment Design

Testable hypothesis
Precise statement of expected outcome

Independent variables (factors)
Attributes we manipulate/vary in each condition
Levels – values for independent variables

Dependent variables (response variables)
Outcome of experiment (measurements)
Usually measure user performance
Experiment Design

Control variables
Attributes that will be fixed throughout experiment
Confound – attribute that varied and was not accounted for
Problem: Confound rather than IV could have caused change in DVs
Confounds make it difficult/impossible to draw conclusions

Random variables
Attributes that are randomly sampled
Increases generalizability
Common Metrics in HCI

Performance metrics:
- Task success (binary or multi-level)
- Task completion time
- Errors (slips, mistakes) per task
- Efficiency (cognitive & physical effort)
- Learnability

Satisfaction metrics:
- Self-report on ease of use, frustration, etc.
Goals

Internal validity
Manipulation of IV is cause of change in DV
Requires eliminating confounding variables (turn them into IVs or RVs)
Requires that experiment is replicable

External validity
Results are generalizable to other experimental settings
Ecological validity – results generalizable to real-world settings

Confidence in results
Statistics
Between vs. Within Subjects

Between subjects

Each participant uses one condition
+/- Participants cannot compare conditions
+ Can collect more data for a given condition
- Need more participants

Within subjects

All participants try all conditions
+ Compare one person across conditions to isolate effects of individual diffs
+ Requires fewer participants
- Fatigue effects
- Bias due to ordering/learning effects
HE vs. User Testing

HE is much faster
1-2 hours each evaluator vs. days-weeks

HE doesn’t require interpreting user’s actions

User testing is far more accurate
Takes into account actual users and tasks
HE may miss problems & find “false positives”

Good to alternate between HE & user-based testing
Find different problems
Don’t waste participants
The Three Belmont Principles

Respect for Persons
Have a meaningful consent process: give information, and let prospective subjects freely choose to participate

Beneficence
Minimize the risk of harm to subjects, maximize potential benefits

Justice
Use fair procedures to select subjects (balance burdens & benefits)

To ensure adherence to principles, most schools require Institutional Review Board approval of research involving human subjects.
Descriptive Statistics

Continuous data:
Central tendency
mean, median, mode

Dispersion
Range (max-min)
Standard deviation

Shape of distribution
Skew, Kurtosis

Categorical data:
Frequency distributions

\[
\mu = \frac{\sum_{i=1}^{N} X_i}{N}
\]
Mean

\[
\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}}
\]
Standard Deviation
Example of Interactions

Multiple IVs effect DV non-additively

Change in time due to leadership differs with changes in group size

Independent variables do interact

Problem Solving Time

Group Size

20

10

6

[from Martin 04]
Are the Results Meaningful?

Hypothesis testing
Hypothesis: Manipulation of IV effects DV in some way
Null hypothesis: Manipulation of IV has no effect on DV
Null hypothesis assumed true unless statistics allow us to reject it

Statistical significance (p value)
Likelihood that results are due to chance variation
$p < 0.05$ usually considered significant (Sometimes $p < 0.01$)
Means that < 5% chance that null hypothesis is true

Statistical tests
- T-test (1 factor, 2 levels)
- Correlation
- ANOVA (1 factor, > 2 levels, multiple factors)
- MANOVA (> 1 dependent variable)
What does $p > 0.05$ mean?

No statistically significant difference (at 5% level)
Are the two conditions thus equivalent?
NO! We DID observe differences.
But can’t be sure they are not due to chance.
Summary

Quantitative evaluations
Repeatable, reliable evaluation of interface elements
To control properly, usually limited to low-level issues
Menu selection method A faster than method B

Pros/Cons
Objective measurements
Good internal validity \Rightarrow repeatability
But, real-world implications may be difficult to foresee
Significant results doesn’t imply real-world importance
3.05s versus 3.00s for menu selection